• Datenschutz
  • Impressum
Seismoblog
Das Natur und Umwelt Nachrichten Portal
  • Start
  • Erdbeben Ticker
    • Erdbeben weltweit
  • Satellitenbilder
    • Sonnen Aktivität
    • Vulkan Aschewolken Global
    • Wolken Europa

Forschung/ Wissenschaft

Mit Laserlicht erzeugtes synthetisches Gewebe für die regenerative Medizin

Birgit Hoffmann Gewebe, Laserlicht, Regeneration, Verletzung, Zellen Mittwoch, 13 Juli, 2011

Kapillare aus künstlichem, elastischem Polymer mit einem Durchmesser von 20 Mikrometern. Fraunhofer-Institut für Lasertechnik ILT, Aachen
Kapillare aus künstlichem, elastischem Polymer mit einem Durchmesser von 20 Mikrometern. Fraunhofer-Institut für Lasertechnik ILT, Aachen

Der Ersatz natürlichen Gewebes nach Verletzungen und Erkrankungen durch Implantate, die eine körpereigene Regeneration mit patienteneigenen Zellen ermöglicht, ist Ziel des Tissue Engineering. Forschern des Fraunhofer-Instituts für Lasertechnik ILT und weiterer Fraunhofer-Institute ist es nun gelungen, mit einem speziellen Laserverfahren biomimetische Hybridstrukturen zu erzeugen, die als Basis solcher Stütz- und Implantatstrukturen dienen, in welche die Zellen anschliessend möglichst effektiv einwachsen.

Ist Gewebe durch eine Erkrankung oder einen Unfall stark geschädigt oder sind Gewebeteile vollständig entfernt, kann der Körper sich oft nicht selbstständig regenerieren. Häufig steht für Transplantationen kein entsprechendes körpereigenes Material zur Verfügung. Deshalb fordern Mediziner zunehmend Gewebe-Implantate, die eine vollständige Regeneration ermöglichen. Doch die derzeitigen künstlich erzeugten Implantate sind oft nicht genügend an die Umgebung im Körper des Patienten angepasst und sind somit als Gewebe-Ersatz nur bedingt geeignet. Ein Grund hierfür ist das fehlende Wissen darüber, wie genau Zellen auf eine dreidimensionale Umgebung reagieren. Forscher des Fraunhofer ILT haben nun in Kooperation mit weiteren Fraunhofer-Instituten ein Verfahren zur Erzeugung biomimetischer Stützstrukturen entwickelt, das so naturgetreu wie möglich dem körpereigenen Gewebe nachempfunden ist. So haben sie für Biologen eine wichtige Voraussetzung dafür geschaffen, in Zukunft Gewebe-Implantate zu generieren, die eine Zellbesiedelung und ein Einwachsen optimal erfolgen lassen. Dazu haben die Aachener Forscher das Verfahren des Rapid Prototyping auf körpereigene Materialien übertragen. Sie kombinieren organische Substanzen mit Polymeren und erzeugen dreidimensionale Strukturen, die für den Bau von künstlichem Gewebe geeignet sind.

Laserlicht verwandelt Flüssigkeit in 3D-Festkörper

Als Basis dienen den Forschern gelöste Proteine und Polymere, die gezielt mit Laserlicht bestrahlt werden und durch photolytische Wirkungen vernetzt werden. Dazu setzen sie eigens entwickelte Laseranlagen ein, bei denen mittels ultrakurzen Laserpulsen sogenannte Multiphotonen-Prozesse ausgelöst werden, die zu einer Polymerisierung im Volumen führen. Im Gegensatz zu konventionellen Prozessen werden am Fraunhofer-ILT neuartige, kostengünstige Mikrochiplaser mit Pulsdauern im Pikosekundenbereich verwendet, die das Verfahren für jedes Labor erschwinglich machen. Das A und O des Verfahrens sind die extrem kurzen Pulszeiten und die hohen Intensitäten des Laserstrahls. Die kurzen Pulszeiten führen dazu, dass das Material keine schädliche Erwärmung erfährt. Höchste Pulsleistungen im Megawattbereich führen dazu, dass im Laserfokus extrem viele Photonen in extrem kurzer Zeit eintreffen und dort einen nichtlinearen Effekt auslösen. Die Moleküle in der Flüssigkeit nehmen mehrere Photonen zugleich auf, so dass sich freie Radikale bilden, die eine chemische Reaktion zwischen den umgebenden Molekülen auslösen. Durch diese so genannte Multiphotonen-Polymerisation entstehen aus der Flüssigkeit heraus Festkörper. Die Anlage steuert die Position des Laserstrahls gemäss vorgegebener CAD-Daten durch ein Mikroskopobjektiv hindurch auf wenige hundert Nanometer genau so, dass nach und nach mikrometerfeine, stabile Volumenelemente von vernetztem Material entstehen.
»Wir können auf diese Weise Stützgerüste für Zellverbände mit einer Auflösung von circa einem Mikrometer direkt aus gelösten Proteinen und Polymeren exakt nach unserem Bauplan erzeugen «, erklärt Sascha Engelhardt, Projektleiter am Fraunhofer ILT. »Diese der Natur nachempfundenen Stützgerüste werden uns wertvolle Antworten auf viele offene Fragen geben können. « Dazu verwendet das Forscher-Team unterschiedliche körpereigene Eiweissstoffe, etwa Albumin, Kollagen oder Fibronektin. Da reine Proteinstrukturen jedoch nicht sehr formstabil sind, kombinieren die Aachener Forscher diese mit biokompatiblen Polymeren. Zunächst wird aus diesen Polymeren ein Stützgerüst generiert, das den in einem nachfolgenden Schritt hergestellten Proteinstrukturen Halt bietet. Durch dieses neue Verfahren können nun wesentlich stabilere Proteinstrukturen hergestellt werden.

Mediziner können in einem weiteren Schritt körpereigene Zellen auf das Gerüst säen. Die besiedelten Gerüste sollen schliesslich im Körper des Patienten ein gutes Anwachsen des Implantats ermöglichen. Langfristiges Ziel ist es, mit Hilfe des Verfahrens nicht nur einzelne Zellverbände, sondern komplette künstliche, massgeschneiderte Organe zu erzeugen. Für die Medizin wäre dies ein Riesenfortschritt!

Momentan arbeiten die ILT-Forscher daran, das Verfahren zu optimieren. Beispielsweise soll die Produktionsgeschwindigkeit durch die Kombination mit anderen Verfahren des Rapid Prototyping erhöht werden.
Schnelle Prozesse sind nötig, um eines Tages mit diesem Verfahren massgeschneiderte Gerüste für synthetische Gewebe wirtschaftlich erzeugen zu können.

Quelle: Fraunhofer-Institut für Lasertechnik ILT

  • twittern 
  • mitteilen 
  • teilen 
  • teilen 

Related Posts

Global - Weltweit

Forschung /

Studie zeigt nicht erwartete Verstärkung der Walker -Zirkulation auf

forschung

Wissenschaft /

Neue Erkenntnisse: Grundlagen zur Sauerstoff-Atmung älter als gedacht

forschung

Forschung /

Was kleinste Augenbewegungen ausmachen

‹ Vor allem Jugendliche betroffen: Masern breiten sich aus › Wissenschaftler entdecken offenbar Mechanismus, den das Gehirn vor Alterung schützt

Kategorien

  • Allgemein (542)
  • Archäologie (4)
  • Atomkraft (99)
  • Erdbeben (1.086)
  • Erdrutsch (61)
  • Ernährung (306)
  • Feuersbrünste (28)
  • Fluten (426)
  • Forschung (845)
  • Gesundheit (543)
  • Naturschutz (597)
  • Paläontologie (2)
  • Satellitenbilder (8)
  • Seuchen (1.456)
  • Stürme (155)
  • Umweltschutz (446)
  • Vulkane (148)
  • Wissenschaft (609)

Werbung

RSS Aktuelle Trends im Web, Tipps zum Bloggen, WordPress und mehr

  • News Fatigue: Wenn die Nachrichtenflut überfordert Mittwoch, 16 April, 2025
  • Ghosting im Web Mittwoch, 16 April, 2025
  • Steigende Tendenz von Unternehmen, die sich mit KI beschäftigen Dienstag, 22 Oktober, 2024
  • Programmieren als Pflichtfach? Dienstag, 22 Oktober, 2024
  • Smart-Home-Technologie: Smart-Home-Anwendungen in fast jedem zweiten Zuhause Dienstag, 27 August, 2024
  • Zukunftstechnologie: Was halten Unternehmen vom Metaverse? Dienstag, 27 August, 2024

Back to Top

Blogroll

  • Blogging Inside
  • PHP Archiv

Seiten

  • Datenschutz
  • Erdbeben Ticker
  • Erdbeben weltweit
  • Impressum
  • Nutzungsbedingungen
  • Sonnen Aktivität
  • Vulkan Aschewolken Global
  • Wolken Europa
© Seismoblog 2025
Seismoblog, das Online Magazin zum Thema Umwelt, Natur, Gesundheit und Ernährung.