• Datenschutz
  • Impressum
Seismoblog
Das Natur und Umwelt Nachrichten Portal
  • Start
  • Erdbeben Ticker
    • Erdbeben weltweit
  • Satellitenbilder
    • Sonnen Aktivität
    • Vulkan Aschewolken Global
    • Wolken Europa
V Forschung

Forschung/ Naturschutz/ Umweltschutz/ Wissenschaft

Klimawandel: Tiefsee- Sedimente geben Aufschluss über die Dynamik der Tiefen Biosphäre

Birgit Hoffmann Klimawandel, Meeresboden, Methan, Sedimente, Tiefsee Montag, 28 Oktober, 2013

Die Veränderungen des Klimas in den letzten hunderttausend Jahren haben das mikrobielle Ökosystem unter dem Meeresboden beeinflusst. Das belegen neu entdeckte Spuren in Meeressedimenten vor der Küste von Peru. Jetzt berichten Forscher vom Bremer Max-Planck-Institut und ihre Kollegen über ihre Ergebnisse in der amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS).

Mit dem internationalen Bohrschiff JOIDES Resolution wurden Bohrkerne bis zu einer Tiefe von 200 Met ... iodp.org
Mit dem internationalen Bohrschiff JOIDES Resolution wurden Bohrkerne bis zu einer Tiefe von 200 Met …
iodp.org

Die Wissenschaftler vom Max-Planck-Institut für Marine Mikrobiologie (MPI) und ihre Kollegen vom MARUM und der Universität Aarhus erforschen seit über zehn Jahren das Leben im Untergrund des Meeres, die Tiefe Biosphäre. Dieses Ökosystem, welches ausschließlich von Mikroben bewohnt wird und mehrere hundert Meter unter den Meeresboden reicht, gilt als stabil. Allerdings ist bisher wenig darüber bekannt, wie sich dieses System über Jahrtausende verändert hat und wie das mikrobielle Leben dort die Stoffkreisläufe von Kohlenstoff in den Ozeanen beeinflusst. Wie dynamisch diese Wechselwirkung ist und war, zeigen die Ergebnisse einer Analyse von Bohrkernen vom Kontinentalschelf vor Peru.

Ein Verbund von Mikroorganismen (Archaeen und Bakterien) im Meeresboden nutzt die Energie von Methan, das sie mit Hilfe von Sulfat oxidieren. Dieser Prozess ist unter dem Namen Anaerobe Oxidation von Methan (AOM) bekannt und wird auch am MPI Bremen erforscht. Das Methan stammt aus tieferen Schichten im Meeresboden, das Sulfat stammt aus dem darüber liegenden Meerwasser, aus dem es langsam in den Meeresboden diffundiert. Beide Reaktionspartner treffen in einer Schicht aufeinander, die man als Methan-Front bezeichnet. Nur an dieser Front stehen beide Substanzen in ausreichender Konzentration den Mikroorganismen zur Verfügung, und genau dort hinterlässt der AOM-Prozess stabile Signaturen in Form von charakteristischen Zellbestandteilen. Archaeol, ein Membranbestandteil der Archaeen, ist ein stabiles Molekül und bleibt deshalb über Jahrtausende bis Jahrmillionen erhalten. Da durch den Stoffwechsel der Mikroben auch Barium und Karbonat freigesetzt werden, kommt es an der Sulfat-Methan-Übergangszone zur Ausfällung von Baryt (Bariumsulfat) und Dolomit (Magnesium-Kalzium-Karbonat). Anhand dieser organischen und mineralischen Signaturen in Bohrkernen kann man die relative Tiefe früherer Übergangszonen zum damaligen Meeresgrund bestimmen.

Wanderung der Methan-Front

Um die Wanderung der Methan-Front in den letzten 500000 Jahren zu rekonstruieren, haben sich der Palaeo-Ozeanograf Dr. Sergio Contreras und seine Kollegen die einzelnen Schichten und deren Gehalt an Baryt, Dolomit und Archaeol in Bohrkernen aus dem Sediment vor der Küste Perus genau angeschaut. Hier nahmen die Forscher im Jahr 2002 an Bord des wissenschaftlichen Bohrschiffs JOIDES Resolution im Rahmen des Ocean Drilling Programs ihre bis zu 200 Meter langen Bohrkerne. Tatsächlich fanden Contreras und Kollegen eine Sedimentschicht, die gleichzeitig Archaeol, Baryt und Dolomit enthält. Erstaunlicherweise liegt diese Schicht ca. 20 Meter oberhalb der heutigen Methan-Front. Zeitliche Abschätzungen lassen den Schluss zu, dass diese Schicht vor ca. 125000 Jahren während der letzten Warmzeit entstanden sein muss, und dass die Methan-Front während der letzten Eiszeit nach unten gewandert ist.

“Das kann man so interpretieren, dass die Mikroorganismen sehr schnell auf Veränderungen im Ozean ansprechen, zumindestens in geologischen Zeiträumen“, erläutert der Biogeochemiker Dr. Tim Ferdelman.

Mit mathematischer Modellierung das Puzzle lösen

Um die Entwicklung der Tiefen Biosphäre und deren Einflüsse zu simulieren, haben Contreras und seine Kollegen ein mathematisches Modell entwickelt. Damit fanden sie heraus, dass der Eintrag von organischem Kohlenstoff der bestimmende Faktor für die relative Lage der Sulfat-Methan-Übergangszone war, wobei bekannt ist, dass der Kohlenstoffeintrag vor der Küste Perus durch das globale Klima gesteuert ist. In den wärmeren Perioden gab es verstärkten Kohlenstoffeintrag, der dazu führte, dass die Methan-Front relativ schnell nach oben wanderte. Entsprechend in kälteren Zeiten mit vermindertem Kohlenstoffeintrag sank die Front tiefer.

„Diese jetzt entdeckten Zusammenhänge werden wir in den neuen Modellen für die Tiefe Biosphäre berücksichtigen“, fasst Dr. Bo Liu zusammen, der das Modell für die Studie entwickelt hat.

Der Geologe Dr. Patrick Meister unterstreicht die Bedeutung dieser Studie: „Die entdeckten Spuren sind der Schlüssel zur Geschichte von mikrobieller Aktivität und deren dynamische Wechselwirkung mit Klima und Ozeanographie über einen Zeitraum von 100000 Jahren. Wenn wir noch weiter in der Zeit zurückgehen und zum Beispiel die letzte Million Jahre betrachten“, so vermutet Meister, „finden wir möglicherweise noch viel dramatischere Veränderungen in der tiefen Biosphäre.“

Um die Spuren dieser Ereignisse zu erkennen und zu verstehen, braucht es die Zusammenarbeit von Biologen und Geologen, sowie auch weiterhin die Möglichkeit, im Rahmen des Integrated Ocean Drilling Programs (IODP) Sediment aus großer Tiefe zu beproben.

Quelle: Max-Planck-Institut für marine Mikrobiologie

  • twittern 
  • mitteilen 
  • teilen 
  • teilen 

Related Posts

Global - Weltweit

Forschung /

Studie zeigt nicht erwartete Verstärkung der Walker -Zirkulation auf

Beispiel Weingut

Naturschutz /

Landwirtschaft: Bakterium befällt jetzt neben Zuckerrüben und Kartoffeln auch Zwiebeln

wasser720

Umweltschutz /

Sonare, Hydrophone und autonome Roboter sollen für mehr Sicherheit an Talsperren und Dämmen sorgen

‹ Kollision von zwei Motorschiffen auf dem Nord-Ostsee-Kanal › Nord-Ostsee-Kanal bleibt nach Havarie zunächst geschlossen

Kategorien

  • Allgemein (542)
  • Archäologie (4)
  • Atomkraft (99)
  • Erdbeben (1.086)
  • Erdrutsch (61)
  • Ernährung (306)
  • Feuersbrünste (28)
  • Fluten (426)
  • Forschung (845)
  • Gesundheit (543)
  • Naturschutz (597)
  • Paläontologie (2)
  • Satellitenbilder (8)
  • Seuchen (1.456)
  • Stürme (155)
  • Umweltschutz (446)
  • Vulkane (148)
  • Wissenschaft (609)

Werbung

RSS Aktuelle Trends im Web, Tipps zum Bloggen, WordPress und mehr

  • News Fatigue: Wenn die Nachrichtenflut überfordert Mittwoch, 16 April, 2025
  • Ghosting im Web Mittwoch, 16 April, 2025
  • Steigende Tendenz von Unternehmen, die sich mit KI beschäftigen Dienstag, 22 Oktober, 2024
  • Programmieren als Pflichtfach? Dienstag, 22 Oktober, 2024
  • Smart-Home-Technologie: Smart-Home-Anwendungen in fast jedem zweiten Zuhause Dienstag, 27 August, 2024
  • Zukunftstechnologie: Was halten Unternehmen vom Metaverse? Dienstag, 27 August, 2024

Back to Top

Blogroll

  • Blogging Inside
  • PHP Archiv

Seiten

  • Datenschutz
  • Erdbeben Ticker
  • Erdbeben weltweit
  • Impressum
  • Nutzungsbedingungen
  • Sonnen Aktivität
  • Vulkan Aschewolken Global
  • Wolken Europa
© Seismoblog 2025
Seismoblog, das Online Magazin zum Thema Umwelt, Natur, Gesundheit und Ernährung.